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Abstract. The optimal storage capacity of a perceptron with a finite fraction of sign 
constrained weights, which are prescribed a priori, is examined. The storage capacity is 
calculated by considering the fractional volume of weights which can store a set of a N  
random patterns, where N is the size of the input. It is found that in the case where 
(1 - s ) N  weights are sign constrained the capacity is (1 + s ) / 2 a p ( k ) ,  where a p ( k )  is the 
maximal storage capacity in Gardner's case and k is a stability parameter. 

Numerous analyses of neural networks using statistical mechanics tools were published 
in the last few years. Analogies between such systems and random magnetic spin 
systems have been studied extensively [ 11. Recently, a new class of networks, so-called 
multilayer networks, has attracted much attention. The multilayer networks are com- 
posed of neurons like binary units interacted in a feedforward fashion, i.e. no loops 
are allowed in the connected graph. The output of the network can be easily computed 
by propagating the signals from the input units to the output units. In this process 
each element is updated according to some transfer function of its input from the 
previous layer. 

The prototype of this class of architectures is the perceptron [2], which consists of 
N binary input elements and one binary output element. We are interested in the 
embedding of p = U N  relations between pairs of input/output. More precisely, the 
input of the network is a set of p random patterns (f = f 1, i = 1, . . . , N and p = 1, . . . , p 
and a set of p random binary outputs y* = i l ,  p = 1, . . . , p .  For such a network the 
learning process is to modify the synaptic weights, { A } ,  in such a way that 

The stability parameter K is to ensure robustness to errors in the input or to enlarge 
the basin of attractions in the case of fully connected networks and was first introduced 
by Gardner [3]. In the case K > 0 its value is meaningful only when one specifies the 
normalization of the weights { A }  [3,4]. One commonly-used normalization is the 
spherical normalization 

N 

1 J ; = N  (2) 
j = 1  

which is a global constraint. 
A significant contribution to the perceptron problem was carried out by Gardner 

who showed that the probability existence of solutions can be deduced from the 
fractional volume of the parameters { A }  which obeys constraints (1) and (2) [3]. Recent 
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work applied this method to various cases and here we would like to emphasize two 
lines of generalizations. In the first approach, the global constraint is replaced by local 
constraints on each individual weight. This class of problems contains, for instance, 
the perceptron in the Ising limit [4,5] or in the limit of discrete synaptic weights [6]. 
In the second approach, local constraints are added in addition to the spherical 
constraint. An example that belongs to this class is a network with sign-constrained 
synapses [7]. In this case the sign of all the weights are prescribed a priori. The study 
of neural networks with local constraints on the weight strengths is motivated from 
both biological and applications points of view. 

In this work we will concentrate on the second approach, but the local constraints 
could differ from one weight to another. More precisely, our perceptron consists of 
sN unconstrained weights 

Ji E (-CO, 03) i =  1,. . . , sN (3) 

and ( 1  - s) N sign-constrained weights 

Ji E ( 0 , ~ )  i=sN+l ,  . . . ,  N. (4) 

The limit s = 1 is Gardner’s case, where each point on the sphere, (2), is available as 
a solution. The second limit s = 0 is the sign-constrained weights where only the 2 Y N  
connected region of the sphere is available as a solution. 

Following Gardner, the relative volume in the weights space for the network defined 
by (3)  and (4) is given by 

where C is a normalization constant and the theta and the delta functions stand for 
constraints ( 1 )  and (2) respectively. 

The computation proceeds as in [3] and [4]. One concentrates on the computation 
of In V which is a quantity of order N. This quantity is averaged over the quenched 
distributions of the random input patterns {t f} ,  in the expectation that the fluctuations 
of In V from sample to sample are negligible. Using the replica method one should 
calculate the average over the following quantity 

where (. , .) stands for the average over the random inputs {tf}. In the thermodynamic 
limit and within the replica-symmetric ansatz, (6) can be expressed in terms of three 
order parameters E, 4 and q in the following form 

where 
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and the order parameter q is the overlap between two possible solutions represented 
by weights of two different replicas 

The saddle point equations are obtained by taking the derivatives of (In V) with 
respect to q, E and 4 to zero. Near the critical capacity we assume that q -+ 1 and 
+ / ( E  + 4 )  + CO, These assumptions will be checked self-consistently to satisfy the 
solution. In this limit the saddle-point equations with respect to E and are given 
respectively by 

0 = 2 ( ~  + 4)2 -24 - ( 1  - S ) E  (11)  

and 

(s - l ) + ( s  - 114 +2qE 
o=q+- 

2 4  2(E + +I2 ‘ 

Near the maximal storage capacity, E and 4 can be expressed as a power series 
of ( 1  - q) .  Substitution of this expansion in equations ( l l ) ,  (12) gives: 

and 

Now one can indeed verify that as q -+ 1, + / (E  + 4 )  + 03. Using these results one can 
find that (7) can be expressed in the following form 

where A ( q )  is the less singular part of (In V). In Gardner’s case, s = 1 ,  this quantity, 
(In V), is given by 

It is now clear that these two equations, (15) and (16), are the same up to rescaling 
of a. Hence, one can conclude without doing any actual calculations that 

where ac(l ,  K )  is the solution in the Gardner’s limit, s = 1 [3,4]. In the simple case 
K = 0, a,( 1 , O )  = 2 and (17) gives 

a,(s) = 1 + s O ~ S 4 1 .  (18) 

Both end points of (18) were previously obtained. The limit s = 1 is Gardner’s case 
which gives a ,  = 2, and the limit s = 0 is the sign-constrained case which gives a, = 1 [8]. 
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The results, (17), (18), indicate a general rule. The maximal embedding information 
in a sign-constrained weight is one half of the maximal embedding information in an 
unconstrained weight. This result is correct even in the case of positive K and in the 
presence of different local constraints on each individual weight. In the simple case, 
K = 0 ,  the maximal embedding information in a constrained weight is one bit of 
information and the maximal embedding information in the case of unconstrained 
weight is two bits of information. 

It is important to stress that the double maximal embedding information in an 
unconstrained weight in comparison to a constrained weight where K = 0, is a general 
result which is independent of the possible continuous range for each weight. In order 
to verify this statement let us examine now a few simple cases. 

( a )  Ns weights are constrained to (-a, a )  and the rest are constrained to (0, a ) ,  
where a is a constant. It is obvious that the maximal storage capacity is unchanged, 
since the weights could be normalized in such a way that -a  s J G a. However, it is 
also obvious that after the normalization the scale of the spherical constraint is changed. 

( b )  Ns weights are constrained to (-a, a )  and the rest are constrained to (0, b ) ,  
where a and b are some constants and we assume that b > a. It is obvious that the 
maximal capacity is bounded from below by the case where Ns weights are constrained 
to ( -a,  a )  and the rest are constrained to (0, a) .  Using case ( a ) ,  the capacity is bounded 
from below by 1 + s. On the other hand, the maximal capacity is bounded from above 
by the case where Ns weights are constrained by (-b,  b )  and the rest are constrained 
by (0, b ) ,  which gives also 1 + s. Hence, the maximal storage capacity is again 1 + s. 

(c) Using similar ideas, one can verify that for the case J ie( -a i ,  b i ) ,  where a, 
( i  s Ns)  and bi are any positive numbers and ai is zero for i > Ns, the maximal storage 
capacity is again 1 + s. The only necessary condition is that the continuous range for 
each weight includes the origin. Furthermore, the result (18)  is unchanged even when 
one gives a different probability for each possible point in the weights space. In this 
case, the integrals over the weights, 1 dJ, in ( 5 )  and ( 6 )  are replaced by dJpj(J) 
where p,(J,) is some even positive distribution function. One can carry out the calcula- 
tion in a similar way and find explicitly for particular cases that the result (18) is 
unchanged. The idea is that all solutions exist independently of the form of p ( J ) ,  but 
with different probabilities. Hence, the maximal storage capacity is not affected by p ( J ) .  

Finally, we would like to comment that a similar learning algorithm suggested in 
reference (8) for Dale’s rule can be used for the discussed networks. The stability 
analysis of this model can also be done but it is expected that the replica symmetric 
solution is stable, since the available weight space is a connected region. 
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